Goal-oriented dialog has been given attention due to its numerous applications in artificial intelligence. Goal-oriented dialogue tasks occur when a questioner asks an action-oriented question and an answerer responds with the intent of letting the questioner know a correct action to take. To ask the adequate question, deep learning and reinforcement learning have been recently applied. However, these approaches struggle to find a competent recurrent neural questioner, owing to the complexity of learning a series of sentences. Motivated by theory of mind, we propose "Answerer in Questioner's Mind" (AQM), a novel information theoretic algorithm for goal-oriented dialog. With AQM, a questioner asks and infers based on an approximated probabilistic model of the answerer. The questioner figures out the answerer's intention via selecting a plausible question by explicitly calculating the information gain of the candidate intentions and possible answers to each question. We test our framework on two goal-oriented visual dialog tasks: "MNIST Counting Dialog" and "GuessWhat?!". In our experiments, AQM outperforms comparative algorithms by a large margin.


翻译:以目标为导向的对话因其在人工智能方面的多种应用而得到关注。当问者提出面向行动的问题和回答者回应时,目标导向的对话任务就会发生,目的是让问者知道正确的行动。问问题,最近已经应用了深层次的学习和强化学习。然而,由于学习一系列句子的复杂性,这些方法努力寻找一个合格的经常性神经问答者。我们根据思想理论,建议“质疑者心智中的反射者”(AQM),这是面向目标的对话的新的信息理论算法。AQM,一个提问者根据答案者大致的概率模型提问和推断。提问者通过明确计算候选人意图的信息收益和每个问题的可能答案,从答案中挑选出一个合理的问题。我们测试我们的框架有两个面向目标的视觉对话任务:“MNIST对对话框的计算 ” 和“Guessaute?” 。在我们实验中,AQM用大幅度的对比算法。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Top
微信扫码咨询专知VIP会员