EHR systems lack a unified code system forrepresenting medical concepts, which acts asa barrier for the deployment of deep learningmodels in large scale to multiple clinics and hos-pitals. To overcome this problem, we introduceDescription-based Embedding,DescEmb, a code-agnostic representation learning framework forEHR. DescEmb takes advantage of the flexibil-ity of neural language understanding models toembed clinical events using their textual descrip-tions rather than directly mapping each event toa dedicated embedding. DescEmb outperformedtraditional code-based embedding in extensiveexperiments, especially in a zero-shot transfertask (one hospital to another), and was able totrain a single unified model for heterogeneousEHR datasets.
翻译:电子人力资源系统缺乏一个统一的代号系统来代表医疗概念,这成为在多个诊所和医院大规模部署深层学习模型的障碍。为了克服这一问题,我们引入了基于描述的嵌入式,DescEmb,这是EHR的代名词-不可知代表性学习框架。descEmb利用神经语言理解模型的灵活性来利用其文字缺陷而不是直接将每个事件映射成一个专门的嵌入式。DescEmb超越了在广泛实验中,特别是在零光传输(一个医院到另一个医院)中形成的传统的基于代码嵌入式嵌入式,并且能够将一个单一的统一模型用于混杂的EHR数据集。