Non-local self-similarity in natural images has been verified to be an effective prior for image restoration. However, most existing deep non-local methods assign a fixed number of neighbors for each query item, neglecting the dynamics of non-local correlations. Moreover, the non-local correlations are usually based on pixels, prone to be biased due to image degradation. To rectify these weaknesses, in this paper, we propose a dynamic attentive graph learning model (DAGL) to explore the dynamic non-local property on patch level for image restoration. Specifically, we propose an improved graph model to perform patch-wise graph convolution with a dynamic and adaptive number of neighbors for each node. In this way, image content can adaptively balance over-smooth and over-sharp artifacts through the number of its connected neighbors, and the patch-wise non-local correlations can enhance the message passing process. Experimental results on various image restoration tasks: synthetic image denoising, real image denoising, image demosaicing, and compression artifact reduction show that our DAGL can produce state-of-the-art results with superior accuracy and visual quality. The source code is available at https://github.com/jianzhangcs/DAGL.


翻译:自然图像的非本地自我相似性已被证实为图像恢复前的有效前程。 然而,大多数现有的深非本地方法都为每个查询项指定固定的邻居数目,忽略了非本地关联的动态。 此外,非本地关联通常基于像素, 容易因图像退化而产生偏差。 为了纠正这些弱点,我们在本文件中提议了一个动态关注图解模型( DAGL), 以探索在图像恢复的补丁水平上的动态非本地属性。 具体地说, 我们提议了一个改进的图形模型, 以对每个节点进行有动态和适应性的相邻点来进行匹配。 这样, 图像内容可以通过连接的邻居数目来适应性地平衡超模和超正版的艺术品, 而偏差的非本地关联可以加强信息传递过程。 各种图像恢复任务的实验结果: 合成图像脱色、 真实图像脱色、 图像解色、 解色、 压缩工艺品减少, 显示我们的 DAGL 能够产生高精度和视觉质量的状态图像结果。 源码源代码可以在 http上 http://qhang/ 。

1
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
6+阅读 · 2019年11月14日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年10月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
6+阅读 · 2019年11月14日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2018年10月11日
Top
微信扫码咨询专知VIP会员