Entity Resolution (ER) is a constitutional part for integrating different knowledge graphs in order to identify entities referring to the same real-world object. A promising approach is the use of graph embeddings for ER in order to determine the similarity of entities based on the similarity of their graph neighborhood. The similarity computations for such embeddings translates to calculating the distance between them in the embedding space which is comparatively simple. However, previous work has shown that the use of graph embeddings alone is not sufficient to achieve high ER quality. We therefore propose a more comprehensive ER approach for knowledge graphs called EAGER (Embedding-Assisted Knowledge Graph Entity Resolution) to flexibly utilize both the similarity of graph embeddings and attribute values within a supervised machine learning approach. We evaluate our approach on 23 benchmark datasets with differently sized and structured knowledge graphs and use hypothesis tests to ensure statistical significance of our results. Furthermore we compare our approach with state-of-the-art ER solutions, where our approach yields competitive results for table-oriented ER problems and shallow knowledge graphs but much better results for deeper knowledge graphs.


翻译:实体分辨率(ER)是整合不同知识图形的宪法部分,以便识别指向同一现实世界对象的实体。一种有希望的方法是使用ER的图形嵌入器,以确定基于其图形相近性的实体的相似性。这种嵌入的相似性计算方法可以用来计算它们之间在相对简单的嵌入空间中的距离。然而,以往的工作表明,单用图形嵌入器不足以实现高ER质量。因此,我们建议对称为EAGER(Embed-Asisticed Knowledge Stuble Interstity Result)的知识图形采用更全面的ER方法,以便灵活地利用图表嵌入和属性值在受监督的机器学习方法中的相似性。我们用不同规模和结构的知识图表对23个基准数据集进行评估,并使用假设测试来确保我们结果的统计意义。此外,我们比较了我们的方法与最先进的ER解决方案,我们的方法为面向表格的问题和浅浅知识图形带来竞争性结果,但更深入的知识图表则产生更好的结果。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动态知识图谱补全论文合集
专知
60+阅读 · 2019年4月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动态知识图谱补全论文合集
专知
60+阅读 · 2019年4月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员