We present a machine learning based approach to address the study of transport processes, ubiquitous in continuous mechanics, with particular attention to those phenomena ruled by complex micro-physics, impractical to theoretical investigation, yet exhibiting emergent behavior describable by a closed mathematical expression. Our machine learning model, built using simple components and following a few well established practices, is capable of learning latent representations of the transport process substantially closer to the ground truth than expected from the nominal error characterising the data, leading to sound generalisation properties. This is demonstrated through an idealized study of the long standing problem of heat flux suppression under conditions relevant for fusion and cosmic plasmas. A simple analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size. While the learned representation can be used as a plug-in for numerical modeling purposes, it can also be leveraged with the above error analysis to obtain reliable mathematical expressions describing the transport mechanism and of great theoretical value.


翻译:我们提出了一种基于机械学习的办法来研究运输过程,在连续机械学中无处不在,特别注意由复杂的微物理学所支配的现象,不切实际的理论调查,但展示出一种封闭数学表达式可以破除的突发行为。我们的机器学习模式,使用简单的部件,并遵循一些既定做法,能够学习运输过程与地面真理的潜在表现,大大超过数据名义误差的预期,从而导致健全的概括性特性。通过对与聚变和宇宙等离子体有关的条件下热通量抑制的长期长期存在问题进行理想化的研究,可以证明这一点。一项简单的分析表明,结果超越了这些具体假设,特别是,通过了解数据质量(危险特性)和适当选择数据集大小,可以控制所学到的表述的准确性。虽然所学的表述可以用作数字模型的插座,但也可以利用上述错误分析获得可靠的数学表达,描述运输机制和巨大的理论价值。

0
下载
关闭预览

相关内容

【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
25+阅读 · 2021年1月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
7+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员