We show that the $4$-state anti-ferromagnetic Potts model with interaction parameter $w\in(0,1)$ on the infinite $(d+1)$-regular tree has a unique Gibbs measure if $w\geq 1-\frac{4}{d+1}$ for all $d\geq 4$. This is tight since it is known that there are multiple Gibbs measures when $0\leq w<1-\frac{4}{d+1}$ and $d\geq 4$. We moreover give a new proof of the uniqueness of the Gibbs measure for the $3$-state Potts model on the $(d+1)$-regular tree for $w\geq 1-\frac{3}{d+1}$ when $d\geq 3$ and for $w\in (0,1)$ when $d=2$.
翻译:我们显示,在无穷(d+1)的普通树上,4美元的国家反地磁器模型与互动参数$w@in(0,1美元),如果$w\geq 1-\frac{4 ⁇ d+1}美元对所有美元来说是美元\geq 4美元,则具有独特的Gibbs计量标准。这很紧,因为众所周知,当$0\leq w < 1\frac{4 ⁇ d+1}美元和$d\geq 4美元时,Gibs计量标准是独特的。此外,我们提供了一个新的证据,证明美元(d+1)美元对美元1\frac{3 ⁇ d+1}美元对美元对美元对美元1-gbs模式对美元对美元对美元(d+1)对美元对美元对美元(wgeq 1\frac{3>+1美元对美元和美元对美元对美元(0,0,1美元)对美元对Gibs衡量标准的独特性。