Because it determines a center-outward ordering of observations in $\mathbb{R}^d$ with $d\geq 2$, the concept of statistical depth permits to define quantiles and ranks for multivariate data and use them for various statistical tasks (e.g. inference, hypothesis testing). Whereas many depth functions have been proposed \textit{ad-hoc} in the literature since the seminal contribution of \cite{Tukey75}, not all of them possess the properties desirable to emulate the notion of quantile function for univariate probability distributions. In this paper, we propose an extension of the \textit{integrated rank-weighted} statistical depth (IRW depth in abbreviated form) originally introduced in \cite{IRW}, modified in order to satisfy the property of \textit{affine-invariance}, fulfilling thus all the four key axioms listed in the nomenclature elaborated by \cite{ZuoS00a}. The variant we propose, referred to as the Affine-Invariant IRW depth (AI-IRW in short), involves the covariance/precision matrices of the (supposedly square integrable) $d$-dimensional random vector $X$ under study, in order to take into account the directions along which $X$ is most variable to assign a depth value to any point $x\in \mathbb{R}^d$. The accuracy of the sampling version of the AI-IRW depth is investigated from a nonasymptotic perspective. Namely, a concentration result for the statistical counterpart of the AI-IRW depth is proved. Beyond the theoretical analysis carried out, applications to anomaly detection are considered and numerical results are displayed, providing strong empirical evidence of the relevance of the depth function we propose here.


翻译:因为它确定了以 $mathbb{R ⁇ d$ 以 $d\ geq 2 美元 计算的观测中向外排序 。 统计深度概念允许为多变量数据定义量和排名,并将这些数据用于各种统计任务( 例如推断、 假设测试 ) 。 许多深度功能是自\ cite{Tukey75} 初始贡献以来在文献中提议的\ textit{ ad- hoc}, 并不是所有这些功能都具备与 univariate 概率分布的量级精度函数相似的属性。 在本文中, 我们提议扩大统计深度定义的量值和排名顺序, 最初在\ cite{ Tukey{Tukey75} 中引入的 IR IR 深度( 以缩略式格式显示的 IR ), 为满足 文本的属性, 因此满足了由\ cite = = ogoex 计算的四重度函数。 我们提议的变式, 称为“ likein- develop liverital lives develop ral dal livesal reval ral ” 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员