Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.
翻译:由于基本的非线性、混合性和内在不稳定动态需要通过有限的接触力量稳定下来,因此为腿形机器人生成强大的轨迹仍然是一项艰巨的任务。此外,由于与环境的未经模拟的接触互动和模型不匹配引起的扰动会妨碍计划的轨道质量,从而导致不安全的动作。在这项工作中,我们提议利用随机轨迹优化来生成稳健的近亲动力轨迹,以考虑到模型动态的不确定性和接触地点的参数不确定性。通过强健的中枢和整体轨道优化之间的交替,我们产生强大的动力轨迹,同时与整个身体的动态保持一致。我们在四重机器人上进行一系列具有不同不确定性的模拟,显示我们的随机轨迹优化问题减少了不同阵列的足滑坡量,同时在确定性规划方面取得更好的表现。