We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear elliptic partial differential equations (PDEs) based on overlapping subdomains. Our approach reads as a constrained optimization statement that penalizes the jump at the components' interfaces subject to the approximate satisfaction of the PDE in each local subdomain. Furthermore, the approach relies on the decomposition of the local states into a port component -- associated with the solution on interior boundaries -- and a bubble component that vanishes at ports: this decomposition allows the static condensation of the bubble degrees of freedom and ultimately allows to recast the constrained optimization statement into an unconstrained statement, which reads as a nonlinear least-square problem and can be solved using the Gauss-Newton method. We present thorough numerical investigations for a two-dimensional neo-Hookean nonlinear mechanics problem to validate our proposal; we further discuss the well-posedness of the mathematical formulation and the \emph{a priori} error analysis for linear coercive problems.


翻译:我们建议根据重叠的子域,为参数化非线性椭圆部分偏差方程(PDEs)配制一个基于组件(CB)的参数性命令减少模型(PMOR)配方。我们采用的方法是,限制优化说明,对各部件界面的跳跃进行处罚,条件是每个本地子域的PDE大致满意度。此外,这种方法依赖于将当地国家分解成一个港口部分 -- -- 与内部边界的解决方案相关 -- -- 以及一个在港口消失的泡沫部分:这种分解使得自由气泡度的静态凝固,最终允许将限制优化说明重新写成一个不受限制的语句,该语句是非线性最低方位问题,可以使用高斯-纽顿方法加以解决。我们为二维新休克非线性非线性机械问题提出彻底的数字调查,以证实我们的提案;我们进一步讨论数学配方和线性胁迫问题前置的精确度分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Slowly Varying Regression under Sparsity
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员