Scientists have long aimed to discover meaningful equations which accurately describe data. Machine learning algorithms automate construction of accurate data-driven models, but ensuring that these are consistent with existing knowledge is a challenge. We developed a methodology combining automated theorem proving with symbolic regression, enabling principled derivations of laws of nature. We demonstrate this for Kepler's third law, Einstein's relativistic time dilation, and Langmuir's theory of adsorption, in each case, automatically connecting experimental data with background theory. The combination of logical reasoning with machine learning provides generalizable insights into key aspects of the natural phenomena.
翻译:长期以来,科学家一直致力于发现能够准确描述数据的有意义的方程式。机器学习算法将精确的数据驱动模型的构建自动化,但确保这些模型与现有知识一致是一项挑战。我们开发了一种方法,将自动理论验证与象征性回归相结合,使自然法则的原则衍生成为可能。我们为开普勒的第三部法律、爱因斯坦相对论的时间膨胀和朗穆尔的吸收理论展示了这一点,在每种情况下,实验数据自动与背景理论联系起来。逻辑推理与机器学习相结合,为自然现象的关键方面提供了可概括的洞察力。