This work presents an approach for control, state-estimation and learning model (hyper)parameters for robotic manipulators. It is based on the active inference framework, prominent in computational neuroscience as a theory of the brain, where behaviour arises from minimizing variational free-energy. The robotic manipulator shows adaptive and robust behaviour compared to state-of-the-art methods. Additionally, we show the exact relationship to classic methods such as PID control. Finally, we show that by learning a temporal parameter and model variances, our approach can deal with unmodelled dynamics, damps oscillations, and is robust against disturbances and poor initial parameters. The approach is validated on the `Franka Emika Panda' 7 DoF manipulator.
翻译:这项工作为机器人操控器提供了一种控制、国家估计和学习模型(超高)参数的方法,它以积极的推论框架为基础,在作为大脑理论的计算神经科学中占有突出地位,其行为起源于尽量减少变异自由能源,机器人操控器展示了与最先进方法相比的适应性和强健行为。此外,我们展示了与PID控制等经典方法的确切关系。最后,我们显示,通过学习时间参数和模型差异,我们的方法可以处理非模型化动态、大坝振荡,并且对扰动和最初参数差强健。这种方法在“Franka Emilka Panda” 7 DoF 操纵器上得到验证。