Advancements in wireless communication and the increased accessibility to low-cost sensing and data processing IoT technologies have increased the research and development of urban monitoring systems. Most smart city research projects rely on deploying proprietary IoT testbeds for indoor and outdoor data collection. Such testbeds typically rely on a three-tier architecture composed of the Endpoint, the Edge, and the Cloud. Managing the system's operation whilst considering the security and privacy challenges that emerge, such as data privacy controls, network security, and security updates on the devices, is challenging. This work presents a systematic study of the challenges of developing, deploying and managing urban monitoring testbeds, as experienced in a series of urban monitoring research projects, followed by an analysis of the relevant literature. By identifying the challenges in the various projects and organising them under the V-model development lifecycle levels, we provide a reference guide for future projects. Understanding the challenges early on will facilitate current and future smart-cities IoT research projects to reduce implementation time and deliver secure and resilient testbeds.


翻译:无线通信的进步以及低成本遥感和数据处理的无障碍程度的提高增加了城市监测系统的研究和开发,大多数智能城市研究项目都依靠利用专有的IOT测试台来收集室内和室外数据,这种测试台通常依赖由端点、边缘和云组成的三级结构。管理系统的运作,同时考虑到数据隐私控制、网络安全和设备安全更新等新出现的安全和隐私挑战,具有挑战性。这项工作对开发、部署和管理城市监测测试台的挑战进行了系统研究,正如一系列城市监测研究项目所经历的那样,并随后对相关文献进行了分析。通过查明各个项目的挑战,并在V型发展生命周期水平下组织这些测试台,我们为今后的项目提供了参考指南。了解早期的挑战将有助于当前和未来智能城市的IOT研究项目,以缩短执行时间,提供安全和具有复原力的测试台。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
93+阅读 · 2021年5月17日
Arxiv
20+阅读 · 2020年6月8日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员