项目名称: 参量波长多播光子信道化射频接收关键技术研究

项目编号: No.61307088

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 孙豹

作者单位: 电子科技大学

项目金额: 30万元

中文摘要: 宽带射频接收机朝着大带宽、高频率发展,要求具有瞬时接收高频宽带信号的能力。信道化技术的出现使得宽带射频接收机的性能得到极大的提高。相对于传统的信道化技术,光纤信道化具有体积小、重量轻、成本低、复杂度小等特点。本项目提出了一种基于波长多播的光纤信道化技术用于实施的射频频谱监测和分析。本方案使用双泵浦自种子激光参量混频器形成多波长,将输入的射频信号高质量地拷贝到每个波长上,后端再经过FP标准具滤波和波分解复用器,将子信道分离。这种信道化接收方式,可以通过调节三个输入波长(1个种子激光和2个泵浦激光)方便的进行重构。并且避免使用光滤波器堆栈,极大了减小了插入损耗。本项目拟研究的光纤信道化系统,将为宽带射频接收机的发展起重要的推动作用。

中文关键词: 四波混频;高非线性光纤;信道化;组播;

英文摘要: The applications drive the wideband RF receiver toward higher frequencies and larger bandwidths, which poses a significant challenge to digital RF receiver. We propose and demonstrate a photonic approach to a reconfigurable channelized radio frequency (RF) receiver for instantaneous RF spectrum monitoring and analysis. Our approach relies on the generation of high quality copies of the RF input by wavelength multicasting in a 2- pump self-seeded parametric mixer and the use of off-the-shelf filtering element such as Fabry-Perot etalon and wavelength division demultiplexers. The parametric channelizer scheme trades frequency non-degeneracy of the newly generated copies for ease of filtering design. Self seeding scheme employed to wavelength multicast the original RF signal to a large number of copies enables easy reconfigurability of the device by simple tuning of the three input waves, i.e. seed and pumps.The proposed channelized scheme will play a important role in the development of wideband RF receiver.

英文关键词: four wave mixing;feedback;high nonlinear fibe;channelization;

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
21+阅读 · 2020年9月14日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
能效比提升超两倍,全球最高效ADC芯片问世
机器之心
0+阅读 · 2021年5月22日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
论文 | 深度学习实现目标跟踪
七月在线实验室
48+阅读 · 2017年12月8日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
21+阅读 · 2020年9月14日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
能效比提升超两倍,全球最高效ADC芯片问世
机器之心
0+阅读 · 2021年5月22日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
论文 | 深度学习实现目标跟踪
七月在线实验室
48+阅读 · 2017年12月8日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员