Let $\mathbf{G}:=(G_1, G_2, G_3)$ be a triple of graphs on the same vertex set $V$ of size $n$. A rainbow triangle in $\mathbf{G}$ is a triple of edges $(e_1, e_2, e_3)$ with $e_i\in G_i$ for each $i$ and $\{e_1, e_2, e_3\}$ forming a triangle in $V$. The triples $\mathbf{G}$ not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities $(\alpha_1, \alpha_2, \alpha_3)$ such that if $| E(G_i)|> \alpha_i\binom{n}{2}$ for each $i$ and $n$ is sufficiently large, then $\mathbf{G}$ must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and \v{S}\'amal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Gy\"ori, He, Lv, Salia, Tompkins, Varga and Zhu. Further, we investigate a minimum degree variant of our problem, and show the extremal behaviour in that setting is quite different to the one we see in the edge density case.
翻译:Lets\mathbf{G} : = (G_ 1, G_ 2, G_ 3美元) 是同一顶端上一个图表的三倍。 一个彩虹三角以$\ mathbf{G} $$_ 1, e_ 2, e_ 3美元, $_ i_ 美元, G_ 美元, $_ 1, e_ 2, e_ 3 美元, 美元组成一个三角形, 美元组成一个三角形。 三个不包含彩虹三角形, 也称为 Gallai 彩虹颜色模板 。 彩虹三角形以$$_ 1, e_ 2, e_ 2, e_ g_ g_ 美元 美元 美元 3美元 : = 美元 1, 美元( G_ i), ealphe2, e_ lef_ 美元组成一个三角形 。 如果每个美元和 美元都足够大,, 那么 $\\\ b 色的颜色将显示一个颜色 。