In this work, we present interpGaze, a novel framework for controllable gaze redirection that achieves both precise redirection and continuous interpolation. Given two gaze images with different attributes, our goal is to redirect the eye gaze of one person into any gaze direction depicted in the reference image or to generate continuous intermediate results. To accomplish this, we design a model including three cooperative components: an encoder, a controller and a decoder. The encoder maps images into a well-disentangled and hierarchically-organized latent space. The controller adjusts the magnitudes of latent vectors to the desired strength of corresponding attributes by altering a control vector. The decoder converts the desired representations from the attribute space to the image space. To facilitate covering the full space of gaze directions, we introduce a high-quality gaze image dataset with a large range of directions, which also benefits researchers in related areas. Extensive experimental validation and comparisons to several baseline methods show that the proposed interpGaze outperforms state-of-the-art methods in terms of image quality and redirection precision.
翻译:在这项工作中,我们展示了一个控制外观调整的新框架,它既能实现精确的调整方向,又能连续的内插。考虑到两个具有不同属性的视觉图像,我们的目标是将一个人的眼视转向任何在参考图像中描绘的视觉方向,或者产生连续的中间结果。为了实现这一点,我们设计了一个模型,其中包括三个合作组成部分:一个编码器、一个控制器和一个解码器。编码器将图像映射成一个分解的、分级组织起来的潜伏空间。控制器通过改变控制矢量来调整潜在矢量的大小,使其达到相应属性的预期强度。解码器将预期的表达方式从属性空间转换到图像空间。为了便利覆盖全视向空间,我们引入了一个高质量的视觉图像数据集,该数据集也使相关领域的研究人员受益。对若干基线方法进行广泛的实验性验证和比较表明,拟议的干涉式超越了图像质量和再定向精确度方面的最新技术方法。