Recent advancements in artificial intelligence (AI) have significantly influenced various fields, including mechanical engineering. Nonetheless, the development of high-quality, diverse datasets for structural analysis still needs to be improved. Although traditional datasets, such as simulated jet engine bracket dataset, are useful, they are constrained by a small number of samples, which must be improved for developing robust data-driven surrogate models. This study presents the DeepJEB dataset, which has been created using deep generative models and automated engineering simulation pipelines, to overcome these challenges. Moreover, this study provides comprehensive 3D geometries and their corresponding structural analysis data. Key experiments validated the effectiveness of the DeepJEB dataset, demonstrating significant improvements in the prediction accuracy and reliability of surrogate models trained on this data. The enhanced dataset showed a broader design space and better generalization capabilities than traditional datasets. These findings highlight the potential of DeepJEB as a benchmark dataset for developing reliable surrogate models in structural engineering. The DeepJEB dataset supports advanced modeling techniques, such as graph neural networks (GNNs) and high-dimensional convolutional networks (CNNs), leveraging node-level field data for precise predictions. This dataset is set to drive innovation in engineering design applications, enabling more accurate and efficient structural performance predictions. The DeepJEB dataset is publicly accessible at: https://www.narnia.ai/dataset
翻译:暂无翻译