While classical approaches to autonomous robot navigation currently enable operation in certain environments, they break down in tightly constrained spaces, e.g., where the robot needs to engage in agile maneuvers to squeeze between obstacles. Recent machine learning techniques have the potential to address this shortcoming, but existing approaches require vast amounts of navigation experience for training, during which the robot must operate in close proximity to obstacles and risk collision. In this paper, we propose to side-step this requirement by introducing a new machine learning paradigm for autonomous navigation called learning from hallucination (LfH), which can use training data collected in completely safe environments to compute navigation controllers that result in fast, smooth, and safe navigation in highly constrained environments. Our experimental results show that the proposed LfH system outperforms three autonomous navigation baselines on a real robot and generalizes well to unseen environments, including those based on both classical and machine learning techniques.


翻译:虽然典型的自主机器人导航方法目前允许在某些环境中运行,但它们在严格限制的空间破裂,例如机器人需要采用灵活机动的动作来挤压障碍。最近的机器学习技术有可能解决这一缺陷,但现有方法需要大量的导航培训经验,在培训期间,机器人必须在靠近障碍和风险碰撞的地方运行。在本文件中,我们提议通过引入一个自主导航的新型机器学习模式来绕过这一要求,该模式称为“从幻觉中学习 ” ( LfH ), 它可以使用在完全安全的环境中收集的培训数据来计算导航控制器,从而导致在高度受限制的环境中快速、顺畅和安全的导航。我们的实验结果表明,拟议的LfH 系统在真正的机器人上超越了三个自主导航基线,并且非常接近无形的环境,包括基于古典和机器学习技术的环境。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
1+阅读 · 2021年3月12日
Arxiv
6+阅读 · 2020年12月8日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员