Conditions are obtained for a Gaussian vector autoregressive time series of order $k$, VAR($k$), to have univariate margins that are autoregressive of order $k$ or lower-dimensional margins that are also VAR($k$). This can lead to $d$-dimensional VAR($k$) models that are closed with respect to a given partition $\{S_1,\ldots,S_n\}$ of $\{1,\ldots,d\}$ by specifying marginal serial dependence and some cross-sectional dependence parameters. The special closure property allows one to fit the sub-processes of multivariate time series before assembling them by fitting the dependence structure between the sub-processes. We revisit the use of the Gaussian copula of the stationary joint distribution of observations in the VAR($k$) process with non-Gaussian univariate margins but under the constraint of closure under margins. This construction allows more flexibility in handling higher-dimensional time series and a multi-stage estimation procedure can be used. The proposed class of models is applied to a macro-economic data set and compared with the relevant benchmark models.


翻译:Gausian 矢量自动递增时间序列要求为 $1,\\\ldots, VAR(k$), 以自动递减为 $1, VAR(k$) 的单亚值边距, 以自动递减为 $1, VAR(k$) 或 VAR(k$) 的低维边距为 瓦尔(k$), 其条件可以是 $1, 1,\\ldots, S_n $1, 美元, d_ 美元, 通过指定边际序列依赖和某些跨部门依赖参数, 以获得条件。 特殊封闭属性允许在匹配多变量时间序列的子进程之前, 将这些子进程匹配成一个子进程, 美元或低维维维值边距也是 VAR(k$美元) 。 这可能导致在 VAR(k$) 进程固定联合发布观测结果时使用 Gaussisian univariate perate press, 但受边际关闭制约的情况下, 。 这种构造允许在处理较高时间序列和多阶段时间序列和多阶段估算程序方面有更大的灵活性。 。 。 。, 可使用拟议的模型与相关的基准用于与相关的基准, 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年1月20日
Arxiv
0+阅读 · 2023年1月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员