Consider an unweighted, directed graph $G$ with the diameter $D$. In this paper, we introduce the framework for counting cycles and walks of given length in matrix multiplication time $\widetilde{O}(n^\omega)$. The framework is based on the fast decomposition into Frobenius normal form and the Hankel matrix-vector multiplication. It allows us to solve the All-Nodes Shortest Cycles, All-Pairs All Walks problems efficiently and also give some improvement upon distance queries in unweighted graphs.
翻译:考虑一个直径为$D的未加权、 定向图形$G 美元。 在本文中, 我们引入了矩阵乘法时间的计算周期和行长框架 $\ loyltilde{O} (n<unk> omega)$。 框架基于快速分解成 Frobenius 常规形式和 汉克尔 矩阵- 矢量乘法。 它使我们能够高效地解决全节最短周期、 所有行走问题, 并对未加权图表中的距离查询做出一些改进 。</s>