Accurate and ubiquitous localization is crucial for a variety of applications such as logistics, navigation, intelligent transport, monitoring, control, and also for the benefit of communications. Exploiting millimeter-wave (mmWave) signals in 5G and Beyond 5G systems can provide accurate localization with limited infrastructure. We consider the single base station (BS) localization problem and extend it to 3D position and 3D orientation estimation of an unsynchronized multi-antenna user equipment (UE), using downlink multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) signals. Through a Fisher information analysis, we show that the problem is often identifiable, provided that there is at least one multipath component in addition to the line-of-sight (LoS), even if the position of corresponding incidence point (IP) is a priori unknown. Subsequently, we pose a maximum likelihood (ML) estimation problem, to jointly estimate the 3D position and 3D orientation of the UE as well as several nuisance parameters (the UE clock offset and the positions of IPs corresponding to the multipath). The ML problem is a high-dimensional non-convex optimization problem over a product of Euclidean and non-Euclidean manifolds. To avoid complex exhaustive search procedures, we propose a geometric initial estimate of all parameters, which reduces the problem to a 1-dimensional search over a finite interval. Numerical results show the efficiency of the proposed ad-hoc estimation, whose gap to the Cram\'er-Rao bound (CRB) is tightened using the ML estimation.


翻译:对后勤、导航、智能运输、监测、控制等各种应用以及通信而言,准确和无处不在的本地化至关重要。在5G和5G以上系统使用毫米波信号(mmWave)可以提供有限的基础设施的准确本地化。我们认为单一基站(BS)本地化问题,并将其扩大到3D位置和3D方向估算,即一个不同步的多保险用户设备(UE),使用下链接多输入参数、多输出、高输出或高频率多功能(MIMO-OFDM)信号,对通信有好处。通过对Fisher信息进行分析,我们发现问题往往可以辨别,条件是除了直观(LOS)之外至少有一个多路方组件。即使相应的事件点(IP)的位置是未知的。随后,我们提出了最大的可能性(ML)估算问题,联合估计了多输入的多输出、高输出或多位频率显示多路透度(MI-C)的估计值(IM-C) 初步估算结果,而IMC的深度(IMFL) 显示一个不甚高的磁点(IML) 的深度分析结果,对IML) 的深度(IMC) 和深度分析过程的深度分析过程显示一个不测点的深度(IML)。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员