As language models continue to rapidly improve, we can expect their actions and reasoning to become difficult or impossible for weaker agents and humans to follow, undermining interpretability and oversight. With an eye on long-term futures, we pursue methods that encourage models to produce solutions that remain intelligible to weaker collaborators. We formalize intelligibility as handoff robustness: a strong model's solution is intelligible to a weaker model if randomly handing off control to the weaker model along the solution path does not cause failure. Building on this criterion, we introduce tandem training for language models, a reinforcement learning (RL) paradigm in which rollout tokens are intermittently and randomly sampled from a frozen weak model rather than the strong model being trained. Because rollouts succeed only when the strong model's actions and reasoning process can be continued by the weak model -- when the two can co-construct a successful solution -- optimizing standard RL objectives with tandem training implicitly incentivizes both correctness and intelligibility. In the GSM8K math reasoning task, tandem training reliably teaches models to abandon jargon and adapt their language to weaker partners while keeping task accuracy high. Our results demonstrate a promising route to building AI systems that remain auditable by weaker agents, with implications for human--AI collaboration and multi-agent communication.
翻译:暂无翻译