Emerging from low-level vision theory, steerable filters found their counterpart in prior work on steerable convolutional neural networks equivariant to rigid transformations. In our work, we propose a steerable feed-forward learning-based approach that consists of neurons with spherical decision surfaces and operates on point clouds. Such spherical neurons are obtained by conformal embedding of Euclidean space and have recently been revisited in the context of learning representations of point sets. Focusing on 3D geometry, we exploit the isometry property of spherical neurons and derive a 3D steerability constraint. After training spherical neurons to classify point clouds in a canonical orientation, we use a tetrahedron basis to quadruplicate the neurons and construct rotation-equivariant spherical filter banks. We then apply the derived constraint to interpolate the filter bank outputs and, thus, obtain a rotation-invariant network. Finally, we use a synthetic point set and real-world 3D skeleton data to verify our theoretical findings.
翻译:从低水平的视觉理论中,可控过滤器在先前关于可控进化神经网络的工作中找到了对应的可控进化神经网络,这种神经网络的变异性与僵硬变异。在我们的工作中,我们建议一种可控进化进化学习法,由具有球状决定面的神经元组成,在点云上运行。这种球质神经元是通过欧洲的同步嵌入获得的,最近又在点集的学习演示中被重新审视。聚焦于 3D 几何,我们利用球状神经元的等量性特性,并得出3D 引力限制。在对球状神经元进行对点云进行分类的训练后,我们用四面基基线将神经元翻四倍,并构建旋转-异质透析库。然后我们运用衍生的制约来将过滤库输出结果相互调,从而获得一个旋转-变量网络。最后,我们用一个合成点组和真实世界的3D骨骼数据来验证我们的理论发现。