Linear principal component analysis (PCA) learns (semi-)orthogonal transformations by orienting the axes to maximize variance. Consequently, it can only identify orthogonal axes whose variances are clearly distinct, but it cannot identify the subsets of axes whose variances are roughly equal. It cannot eliminate the subspace rotational indeterminacy: it fails to disentangle components with equal variances (eigenvalues), resulting, in each eigen subspace, in randomly rotated axes. In this paper, we propose $\sigma$-PCA, a method that (1) formulates a unified model for linear and nonlinear PCA, the latter being a special case of linear independent component analysis (ICA), and (2) introduces a missing piece into nonlinear PCA that allows it to eliminate, from the canonical linear PCA solution, the subspace rotational indeterminacy -- without whitening the inputs. Whitening, a preprocessing step which converts the inputs into unit-variance inputs, has generally been a prerequisite step for linear ICA methods, which meant that conventional nonlinear PCA could not necessarily preserve the orthogonality of the overall transformation, could not directly reduce dimensionality, and could not intrinsically order by variances. We offer insights on the relationship between linear PCA, nonlinear PCA, and linear ICA -- three methods with autoencoder formulations for learning special linear transformations from data, transformations that are (semi-)orthogonal for PCA, and arbitrary unit-variance for ICA. As part of our formulation, nonlinear PCA can be seen as a method that maximizes both variance and statistical independence, lying in the middle between linear PCA and linear ICA, serving as a building block for learning linear transformations that are identifiable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
139+阅读 · 2019年9月24日
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员