We give a quantifier elimination procedures for the extension of Presburger arithmetic with a unary threshold counting quantifier $\exists^{\ge c} y$ that determines whether the number of different $y$ satisfying some formula is at least $c \in \mathbb N$, where $c$ is given in binary. Using a standard quantifier elimination procedure for Presburger arithmetic, the resulting theory is easily seen to be decidable in 4ExpTime. Our main contribution is to develop a novel quantifier-elimination procedure for a more general counting quantifier that decides this theory in 3ExpTime, meaning that it is no harder to decide than standard Presburger arithmetic. As a side result, we obtain an improved quantifier elimination procedure for Presburger arithmetic with counting quantifiers as studied by Schweikardt [ACM Trans. Comput. Log., 6(3), pp. 634-671, 2005], and a 3ExpTime quantifier-elimination procedure for Presburger arithmetic extended with a generalised modulo counting quantifier.


翻译:我们给Presburger算术的扩展提供了一个量化取消程序, 其附加一个未完的阈值计分 $\ expences ⁇ ge c} y$, 确定满足某些公式的不同美元数量是否至少为 $c\ in mathbbn $, 其二进制为 $cbc$。 使用Presburger算术的标准量化取消程序, 由此得出的理论很容易在 4 Exptime 中被看成是可判分的。 我们的主要贡献是开发一个创新的量化取消程序, 用于一个在 3 Exptertime 中决定这一理论的通用量化程序, 意思是, 要决定比标准的Presburger算术更难。 作为副结果, 我们获得了改进的预堡计算的量化程序, 其量化符数由 Schweikart [ACM Trans. comput., Log., 6(3), pp.634-671, 2005] 和 3Exptimetime dictication- Elicationationationationationation prburger算算术的3 程序, 延延展延展延一个通用的全调调调数量化。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
18+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
24+阅读 · 2020年3月11日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员