Standard Monte Carlo computation is widely known to exhibit a canonical square-root convergence speed in terms of sample size. Two recent techniques, one based on control variate and one on importance sampling, both derived from an integration of reproducing kernels and Stein's identity, have been proposed to reduce the error in Monte Carlo computation to supercanonical convergence. This paper presents a more general framework to encompass both techniques that is especially beneficial when the sample generator is biased and noise-corrupted. We show our general estimator, which we call the doubly robust Stein-kernelized estimator, outperforms both existing methods in terms of convergence rates across different scenarios. We also demonstrate the superior performance of our method via numerical examples.
翻译:众所周知,标准蒙特卡洛计算在抽样规模方面表现出一种可控的平方根趋同速度。两种最新技术,一种基于控制变异,一种基于重要抽样,两者均来自再生内核和斯坦的特性的结合,都提议把蒙特卡洛计算中的错误降低为超卡通趋同。本文提出了一个更为笼统的框架,以包括两种技术,在样品生成器偏差和噪声干扰时,这两种技术都特别有益。我们展示了我们的通用估测器,我们称之为二元强健健健健健健的斯坦内内射线估测仪,在各种不同情况下,在趋同率方面优于两种现有方法。我们还通过数字实例展示了我们方法的优异性表现。