Spike-timing dependent plasticity (STDP) which observed in the brain has proven to be important in biological learning. On the other hand, artificial neural networks use a different way to learn, such as Back-Propagation or Contrastive Hebbian Learning. In this work, we propose a new framework called mstdp that learn almost the same way biological learning use, it only uses STDP rules for supervised and unsupervised learning and don' t need a global loss or other supervise information. The framework works like an auto-encoder by making each input neuron also an output neuron. It can make predictions or generate patterns in one model without additional configuration. We also brought a new iterative inference method using momentum to make the framework more efficient, which can be used in training and testing phases. Finally, we verified our framework on MNIST dataset for classification and generation task.
翻译:脑部观测到的刺杀依赖性塑料(STDP)在生物学习中被证明是重要的。 另一方面,人工神经网络使用一种不同的学习方法,如后发式或对比性赫比亚学习。在这项工作中,我们提议了一个叫做Mstdp的新框架,它学习的生物学学习方法几乎相同,它只使用STDP规则来监督和不受监督的学习,而不需要全球损失或其他监督信息。这个框架像自动编码器一样工作,使每个输入神经元也成为输出神经元。它可以在一个模型中作出预测或生成模式,而不需要额外的配置。我们还带来了一个新的迭代推论方法,利用动力使框架更加有效,可用于培训和测试阶段。最后,我们核实了我们关于MNIST数据集的框架,用于分类和生成任务。