Robotic systems are often complex and depend on the integration of a large number of software components. One important component in robotic systems provides the calculation of forward kinematics, which is required by both motion-planning and perception related components. End-to-end learning systems based on deep learning require passing gradients across component boundaries.Typical software implementations of forward kinematics are not differentiable, and thus prevent the construction of gradient-based, end-to-end learning systems. In this paper we present a library compatible with ROS-URDF that computes forward kinematics while simultaneously giving access to the gradients w.r.t. joint configurations and model parameters, allowing gradient-based learning and model identification. Our Python library is based on Tensorflow~2 and is auto-differentiable. It supports calculating a large number of kinematic configurations on the GPU in parallel, yielding a considerable performance improvement compared to sequential CPU-based calculation. https://github.com/lumoe/dlkinematics.git
翻译:机器人系统中的一个重要组成部分提供远端运动学学的计算,这是运动规划和感知相关组成部分所要求的。基于深层学习的端到端学习系统需要跨越各个组成部分的梯度。 远端运动学软件的运用是无法区分的,因此防止了基于梯度的、端到端学习系统的构建。 在本文中,我们提出了一个与ROS-URDF兼容的图书馆,该图书馆在计算远端运动学的同时进行前向运动学,同时提供梯度(r.t.)联合配置和模型参数,允许基于梯度的学习和模型识别。我们的Python图书馆以Tensorflow~2为基础,可以自动区分。它支持在GPU上平行计算大量的运动学配置,从而与基于 CPU 的顺序计算相比产生相当大的性能改进。 https://github.com/lumoe/dleinematics.git