We propose a novel approach for Bayesian optimization, called $\textsf{GP-DC}$, which combines Gaussian processes with distance correlation. It balances exploration and exploitation automatically, and requires no manual parameter tuning. We evaluate $\textsf{GP-DC}$ on a number of benchmark functions and observe that it outperforms state-of-the-art methods such as $\textsf{GP-UCB}$ and max-value entropy search, as well as the classical expected improvement heuristic. We also apply $\textsf{GP-DC}$ to optimize sequential integral observations with a variable integration range and verify its empirical efficiency on both synthetic and real-world datasets.
翻译:我们提出一种新颖的贝叶斯优化方法,称为$\textsf{GP-DC}$,将高山进程与距离相关联相结合。它自动平衡勘探和开发,不需要人工参数调整。我们根据一些基准功能评估$textsf{GP-DC}$,并观察到它优于最先进的方法,如$\textsf{GP-UCB}$和最高值的英特普搜索,以及经典的预期超常性改进。我们还用$\textsf{GP-DC}$优化连续整体观测,使用变量集成范围,并验证合成和现实世界数据集的经验效率。