Few-shot learning is a standard practice in most deep learning based histopathology image segmentation, given the relatively low number of digitized slides that are generally available. While many models have been developed for domain specific histopathology image segmentation, cross-domain generalization remains a key challenge for properly validating models. Here, tooling and datasets to benchmark model performance across histopathological domains are lacking. To address this limitation, we introduce MetaHistoSeg - a Python framework that implements unique scenarios in both meta learning and instance based transfer learning. Designed for easy extension to customized datasets and task sampling schemes, the framework empowers researchers with the ability of rapid model design and experimentation. We also curate a histopathology meta dataset - a benchmark dataset for training and validating models on out-of-distribution performance across a range of cancer types. In experiments we showcase the usage of MetaHistoSeg with the meta dataset and find that both meta-learning and instance based transfer learning deliver comparable results on average, but in some cases tasks can greatly benefit from one over the other.


翻译:少见的学习是大多数深层学习基于病理学的病理学图象分解的一个标准做法,因为一般可以获得的数字化幻灯片数量相对较少。虽然许多模型是为特定的病理学图象分解领域开发的,但交叉部位的概括化仍然是适当验证模型的关键挑战。这里缺乏用于在生理病理学领域衡量模型性能的工具和数据集。为解决这一局限性,我们引入了MetaHistoSeg-一个在元学习和实例转移学习中实施独特情景的Python框架。这个框架的设计是为了便于扩展到定制的数据集和任务抽样方案,使研究人员能够快速进行模型设计和实验。我们还设计了一个病理学元数据集,这是用于培训和验证一系列癌症类型分解性表现模型的基准数据集。在实验中,我们展示MetHistoSeg与元数据集的使用情况,并发现基于元学习和实例的转移学习能够平均地产生可比的结果,但在有些情况下,任务可以大大受益于其他任务。

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Python图像处理,366页pdf,Image Operators Image Processing in Python
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
13+阅读 · 2020年4月12日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
12+阅读 · 2019年3月14日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
VIP会员
相关资讯
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员