We propose a novel framework to classify large-scale time series data with long duration. Long time seriesclassification (L-TSC) is a challenging problem because the dataoften contains a large amount of irrelevant information to theclassification target. The irrelevant period degrades the classifica-tion performance while the relevance is unknown to the system.This paper proposes an uncertainty-aware multiple instancelearning (MIL) framework to identify the most relevant periodautomatically. The predictive uncertainty enables designing anattention mechanism that forces the MIL model to learn from thepossibly discriminant period. Moreover, the predicted uncertaintyyields a principled estimator to identify whether a prediction istrustworthy or not. We further incorporate another modality toaccommodate unreliable predictions by training a separate modelbased on its availability and conduct uncertainty aware fusion toproduce the final prediction. Systematic evaluation is conductedon the Automatic Identification System (AIS) data, which is col-lected to identify and track real-world vessels. Empirical resultsdemonstrate that the proposed method can effectively detect thetypes of vessels based on the trajectory and the uncertainty-awarefusion with other available data modality (Synthetic-ApertureRadar or SAR imagery is used in our experiments) can furtherimprove the detection accuracy.
翻译:长期时间序列分类(L-TSC)是一个具有挑战性的问题,因为数据通常包含大量与分类目标无关的信息。不相关的时期会降低分类性能,而系统却不知道其相关性。本文件提议了一个具有不确定性的多实例学习(MIL)框架,以自动识别最相关的时期。预测性不确定性使得能够设计一种注意机制,迫使MIL模型从可能存在的差异时期学习。此外,预测的不确定性是一个原则性估计器,以确定预测是否可信。我们进一步纳入了另一种模式,通过培训一个基于其可用性的单独模型,进行不可靠的预测,并进行不确定性的强化,从而了解最终预测。系统化评估是在自动识别系统数据上进行的,该数据被共选用来识别和跟踪真实世界的船舶。预测性结果显示,拟议的方法能够有效地检测基于轨迹和预测是否可靠,而我们使用的其他图像检测模式是SARA-SAR-asmarinal-sadvical-sadviolual-servilation-alview of the adviewsal-salview-sal-alviewdal-al-salview)