Most existing methods view makeup transfer as transferring color distributions of different facial regions and ignore details such as eye shadows and blushes. Besides, they only achieve controllable transfer within predefined fixed regions. This paper emphasizes the transfer of makeup details and steps towards more flexible controls. To this end, we propose Exquisite and locally editable GAN for makeup transfer (EleGANt). It encodes facial attributes into pyramidal feature maps to preserves high-frequency information. It uses attention to extract makeup features from the reference and adapt them to the source face, and we introduce a novel Sow-Attention Module that applies attention within shifted overlapped windows to reduce the computational cost. Moreover, EleGANt is the first to achieve customized local editing within arbitrary areas by corresponding editing on the feature maps. Extensive experiments demonstrate that EleGANt generates realistic makeup faces with exquisite details and achieves state-of-the-art performance. The code is available at https://github.com/Chenyu-Yang-2000/EleGANt.
翻译:大部分现有方法将化妆品转换为转移不同面部区域的颜色分布, 并忽略了诸如眼影和脸红等细节。 此外, 它们只能在预定的固定区域内实现可控制的转移。 本文强调化妆品细节的转移, 以及更灵活的控制步骤。 为此, 我们提议对化妆品转移进行精细和可本地编辑的GAN( ELEGANT) 。 它将面部属性编码为金字塔特征地图, 以保存高频信息。 它用注意力从引用中提取化妆品特征, 并将其调整为源面, 我们引入了一个小说 Sow- Atention 模块, 将注意力应用在已改变的重叠窗口中, 以减少计算成本。 此外, EleGANt 是第一个通过对地貌地图进行相应编辑, 在任意区域内实现定制本地编辑的。 广泛的实验表明, EleGANt 生成符合现实的化妆品面, 包含精细细节, 并实现状态的艺术性能。 代码可在 https://github.com/ Chenyou- Yang-2000/ EleGANt 上查阅 。