Generative models are designed to address the data scarcity problem. Even with the exploding amount of data, due to computational advancements, some applications (e.g., health care, weather forecast, fault detection) still suffer from data insufficiency, especially in the time-series domain. Thus generative models are essential and powerful tools, but they still lack a consensual approach for quality assessment. Such deficiency hinders the confident application of modern implicit generative models on time-series data. Inspired by assessment methods on the image domain, we introduce the InceptionTime Score (ITS) and the Frechet InceptionTime Distance (FITD) to gauge the qualitative performance of class conditional generative models on the time-series domain. We conduct extensive experiments on 80 different datasets to study the discriminative capabilities of proposed metrics alongside two existing evaluation metrics: Train on Synthetic Test on Real (TSTR) and Train on Real Test on Synthetic (TRTS). Extensive evaluation reveals that the proposed assessment method, i.e., ITS and FITD in combination with TSTR, can accurately assess class-conditional generative model performance.
翻译:生成模型旨在解决数据稀缺问题,即使由于计算进步而使数据数量爆炸,一些应用(例如保健、天气预报、发现故障)仍然缺乏数据,特别是在时间序列领域,因此,基因模型是必要和有力的工具,但它们仍然缺乏一种协商一致的质量评估方法,这种缺陷妨碍了在时间序列数据中自信地应用现代隐含的基因模型,在图像领域的评估方法的启发下,我们采用“受孕时间计数”和“受孕时间距离”来测量时间序列领域有条件的等级基因化模型的质量性能,我们对80个不同的数据集进行了广泛的实验,以研究拟议指标的歧视性能力,同时研究两个现有的评估指标:实时合成测试培训(TRT)和实时合成测试培训(TRTS)。广泛的评估表明,拟议的评估方法,即ITS和FITTD与TRT相结合,可以准确评估等级临界基因模型的性能。