Activation function is a key component in deep learning that performs non-linear mappings between the inputs and outputs. Rectified Linear Unit (ReLU) has been the most popular activation function across the deep learning community. However, ReLU contains several shortcomings that can result in inefficient training of the deep neural networks, these are: 1) the negative cancellation property of ReLU tends to treat negative inputs as unimportant information for the learning, resulting in a performance degradation; 2) the inherent predefined nature of ReLU is unlikely to promote additional flexibility, expressivity, and robustness to the networks; 3) the mean activation of ReLU is highly positive and leads to bias shift effect in network layers; and 4) the multilinear structure of ReLU restricts the non-linear approximation power of the networks. To tackle these shortcomings, this paper introduced Parametric Flatten-T Swish (PFTS) as an alternative to ReLU. By taking ReLU as a baseline method, the experiments showed that PFTS improved classification accuracy on SVHN dataset by 0.31%, 0.98%, 2.16%, 17.72%, 1.35%, 0.97%, 39.99%, and 71.83% on DNN-3A, DNN-3B, DNN-4, DNN- 5A, DNN-5B, DNN-5C, DNN-6, and DNN-7, respectively. Besides, PFTS also achieved the highest mean rank among the comparison methods. The proposed PFTS manifested higher non-linear approximation power during training and thereby improved the predictive performance of the networks.


翻译:激活功能是深层学习的一个关键组成部分,在投入和产出之间进行非线性绘图。校正线性单位(RELU)是深层学习界最受欢迎的激活功能。然而,RELU包含若干缺点,可能导致深神经网络培训效率低下,这些缺点是:1) ReLU的负面取消属性往往将负面投入视为学习的重要信息,导致业绩退化;2 ReLU固有的预先界定性质不大可能促进网络的进一步灵活性、直观性和稳健性;3) ReLU的启用平均值非常正,导致网络层的偏移效应;4 ReLU的多线性结构限制了这些网络的非线性近似能力。为了克服这些缺点,本文采用PFTS(PTS)作为学习的替代标准。 将ReLU作为基线方法,实验表明SVHN数据设置的精确度提高了0.31%、0.989%、2.6%、2.6%至3.3%的DNFS-NF培训方法在D-NF、0.9%、0.9%、2.6%的DNF-NF、1.35%的S、0.9%、0.9%和0.9%的SNFTF培训方法中提高了。

0
下载
关闭预览

相关内容

【图神经网络实用介绍】A practical introduction to GNNs - Part 1
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员