In biometrics and related fields, the Cox proportional hazards model are widely used to analyze with covariate adjustment. However, when some covariates are not observed, an unbiased estimator usually cannot be obtained. Even if there are some unmeasured covariates, instrumental variable methods can be applied under some assumptions. In this paper, we propose the new instrumental variable estimator for the Cox proportional hazards model. The estimator is the similar feature as Martinez-Camblor et al., 2019, but not the same exactly; we use an idea of limited-information maximum likelihood. We show that the estimator has good theoretical properties. Also, we confirm properties of our method and previous methods through simulations datasets.
翻译:在生物鉴别学和相关领域,Cox比例危害模型被广泛用于以共变法调整来分析,然而,当一些共变模型没有观测到时,通常无法获得公正的估计值。即使存在某些非计量共变模型,一些假设下也可以使用工具变量。在本文中,我们为Cox比例危害模型提出了新的工具变量估计值。估计值与Martinez-Camblor等人(2019年)相似,但并不完全相同;我们使用了有限信息最大可能性的概念。我们显示,估计值具有良好的理论属性。此外,我们通过模拟数据集确认我们的方法和以往方法的特性。