In meta-analysis with continuous outcomes, the use of effect sizes based on the means is the most common. It is often found, however, that only the quantile summary measures are reported in some studies, and in certain scenarios, a meta-analysis of the quantiles themselves are of interest. We propose a novel density-based approach to support the implementation of a comprehensive meta-analysis, when only the quantile summary measures are reported. The proposed approach uses flexible quantile-based distributions and percentile matching to estimate the unknown parameters without making any prior assumptions about the underlying distributions. Using simulated and real data, we show that the proposed novel density-based approach works as well as or better than the widely-used methods in estimating the means using quantile summaries without assuming a distribution apriori, and provides a novel tool for distribution visualisations. In addition to this, we introduce quantile-based meta-analysis methods for situations where a comparison of quantiles between groups themselves are of interest and found to be more suitable. Using both real and simulated data, we also demonstrate the applicability of these quantile-based methods.
翻译:暂无翻译