Increasingly, information systems rely on computational, storage, and network resources deployed in third-party facilities or are supported by service providers. Such an approach further exacerbates cybersecurity concerns constantly raised by numerous incidents of security and privacy attacks resulting in data leakage and identity theft, among others. These have in turn forced the creation of stricter security and privacy related regulations and have eroded the trust in cyberspace. In particular, security related services and infrastructures such as Certificate Authorities (CAs) that provide digital certificate service and Third-Party Authorities (TPAs) that provide cryptographic key services, are critical components for establishing trust in Internet enabled applications and services. To address such trust issues, various transparency frameworks and approaches have been recently proposed in the literature. In this paper, we propose a Transparent and Trustworthy TPA using Blockchain (T3AB) to provide transparency and accountability to the trusted third-party entities, such as honest-but-curious third-party IaaS servers, and coordinators in various privacy-preserving machine learning (PPML) approaches. T3AB employs the Ethereum blockchain as the underlying public ledger and also includes a novel smart contract to automate accountability with an incentive mechanism that motivates participants' to participate in auditing, and punishes unintentional or malicious behaviors. We implement T3AB, and show through experimental evaluation in the Ethereum official test network, Rinkeby, that the framework is efficient. We also formally show the security guarantee provided by $T^3AB$, and analyze the privacy guarantee and trustworthiness it provides.


翻译:信息系统日益依赖在第三方设施部署的计算、储存和网络资源,或得到服务提供者的支持。这种方法进一步加重了许多安全和隐私攻击事件不断引发的网络安全关切,这些事件导致数据泄漏和身份盗窃等,进而迫使制定更严格的安全和隐私条例,削弱对网络空间的信任,特别是提供数字证书服务的证书管理局和提供加密关键服务的第三方当局等与安全有关的服务和基础设施,是建立对因特网应用程序和服务的信任的关键组成部分。为了解决这些信任问题,最近还在文献中提出了各种透明度框架和办法。我们提议采用透明和可信赖的TPA, 利用Black链(T3AB)向信任的第三方实体提供透明和问责,例如诚实但可靠的第三方IaAS服务器,以及各种保密机器学习(PML)方法的协调员。我们利用Eexium连锁链作为基本的公共分类,还包括对自动问责的新智能合同和办法。我们提议,利用Block链(T3AB),向受信任的第三方实体提供透明和问责。我们通过一个正式的测试机制,向参与者展示了风险风险审计或实验行为。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月27日
Arxiv
0+阅读 · 2021年3月25日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员