In this paper, we propose a global digital platform to avoid and combat epidemics by providing relevant real-time information to support selective lockdowns. It leverages the pervasiveness of wireless connectivity while being trustworthy and secure. The proposed system is conceptualized to be decentralized yet federated, based on ubiquitous public systems and active citizen participation. Its foundations lie on the principle of informational self-determination. We argue that only in this way it can become a trustworthy and legitimate public good infrastructure for citizens by balancing the asymmetry of the different hierarchical levels within the federated organization while providing highly effective detection and guiding mitigation measures towards graceful lockdown of the society. To exemplify the proposed system, we choose the remote patient monitoring as use case. In which, the integration of distributed ledger technologies with narrowband IoT technology is evaluated considering different number of endorsed peers. An experimental proof of concept setup is used to evaluate the performance of this integration, in which the end-to-end latency is slightly increased when a new endorsed element is added. However, the system reliability, privacy, and interoperability are guaranteed. In this sense, we expect active participation of empowered citizens to supplement the more usual top-down management of epidemics.


翻译:在本文中,我们提议建立一个全球数字平台,通过提供相关实时信息来避免和防治流行病,支持有选择的封锁;利用无线连接的普及性,同时具有可信赖和安全性;根据无处不在的公共系统和公民积极参与的原则,拟议系统的概念化是分散的,但联邦式系统是联邦式的,其基础是信息自决原则;我们主张,只有这样,它才能成为公民的可信赖和合法的公共良好基础设施,平衡联邦式组织内不同级别之间的不对称,同时提供高度有效的检测和指导缓解措施,以便实现社会优雅的封闭;要示范拟议的系统,我们选择远程病人监测作为使用的例子;在这种情况下,对分散的分类账技术与窄带IoT技术的整合进行评价,考虑获得认可的同侪的不同数目;要用概念设置的实验性证据来评价这种整合的绩效,在增加新的认可要素时,端到端的延迟度略有增加。然而,系统可靠性、隐私和互操作性是有保障的。从这个意义上说,我们期望获得授权的公民积极参与,以补充常规的流行病管理。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
7+阅读 · 2021年5月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员