For the modeling, design and planning of future energy transmission networks, it is vital for stakeholders to access faithful and useful power flow data, while provably maintaining the privacy of business confidentiality of service providers. This critical challenge has recently been somewhat addressed in [1]. This paper significantly extends this existing work. First, we reduce the potential leakage information by proposing a fundamentally different post-processing method, using public information of grid losses rather than power dispatch, which achieve a higher level of privacy protection. Second, we protect more sensitive parameters, i.e., branch shunt susceptance in addition to series impedance (complete pi-model). This protects power flow data for the transmission high-voltage networks, using differentially private transformations that maintain the optimal power flow consistent with, and faithful to, expected model behaviour. Third, we tested our approach at a larger scale than previous work, using the PGLib-OPF test cases [10]. This resulted in the successful obfuscation of up to a 4700-bus system, which can be successfully solved with faithfulness of parameters and good utility to data analysts. Our approach addresses a more feasible and realistic scenario, and provides higher than state-of-the-art privacy guarantees, while maintaining solvability, fidelity and feasibility of the system.
翻译:对于未来能源传输网络的建模、设计和规划而言,利益攸关方获取忠实和有用的电力流数据至关重要,同时可以肯定地维护服务提供商商业保密的隐私。这一关键挑战最近在[1]中得到了一定的解决。本文件大大扩展了现有工作。首先,我们减少潜在的泄漏信息,办法是提出一种根本不同的处理后方法,使用电网损失的公共信息,而不是电力发送,从而实现更高程度的隐私保护。第二,我们保护了更敏感的参数,即除一系列阻碍因素外还保护分支屏障。这保护了传输高压网络的电力流数据,使用了不同程度的私人变换,保持了符合和忠实于预期的模型行为的最佳电力流动。第三,我们用PGLib-OPF测试案例[10],在比以往工作规模更大的规模上测试了我们的方法。这导致成功混淆了高达4700-Bus系统,该系统可以成功地解决参数的准确性和对数据分析员的良好使用问题。我们的方法解决了比数据分析员更可靠、更可行和更现实的可行性,同时提供了比可靠、更可靠的保证和更高的系统。