Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fixed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that \model~detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.


翻译:联邦学习系统(FL)涉及多个分布式设备,共同培训一个共享模型,任何参与者都不必向中央服务器披露其本地数据,而无需向中央服务器披露其本地数据。以往的FL方法大多假定设备数据在培训过程中是固定的和固定的。然而,这一假设是不现实的,因为这些设备通常具有不同的抽样率和不同的系统配置。此外,设备数据的基本分布可随着时间变化动态变化,称为概念漂移。概念漂移使学习过程变得复杂,因为现有和即将到来的数据之间不一致。传统的概念漂移处理技术,如基于块和基于共同学习的方法等传统概念的漂移处理技术,由于当地设备的多样性,不适合在联合学习框架中。我们提议一种新颖的方法,即FedConD,以探测和处理本地设备的概念漂移,并尽量减少对不连续的FLL的模型性能的影响。漂移探测战略以适应机制为基础,利用当地模型的历史性能。通过调整每个地方设备的目标功能的正规化参数实现漂移适应。此外,我们还在服务器上设计了一个通信模型方面的通信战略,在两个方向上选择稳妥的基模型,并选择了当地模型模型格式上的最新数据处理方法。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员