Federated Learning (FL) exploits the computation power of edge devices, typically mobile phones, while addressing privacy by letting data stay where it is produced. FL has been used by major service providers to improve item recommendations, virtual keyboards and text auto-completion services. While appealing, FL performance is hampered by multiple factors: i) differing capabilities of participating clients (e.g., computing power, memory and network connectivity); ii) strict training constraints where devices must be idle, plugged-in and connected to an unmetered WiFi; and iii) data heterogeneity (a.k.a non-IIDness). Together, these lead to uneven participation, straggling, dropout and consequently slow down convergence, challenging the practicality of FL for many applications. In this paper, we present GeL, the Guess and Learn algorithm, that significantly speeds up convergence by guessing model updates for each client. The power of GeL is to effectively perform ''free'' learning steps without any additional gradient computations. GeL provides these guesses through clever use of moments in the Adam optimizer in combination with the last computed gradient on clients. Our extensive experimental study involving five standard FL benchmarks shows that GeL speeds up the convergence up to 1.64x in heterogeneous systems in the presence of data non-IIDness, saving tens of thousands of gradient computations.


翻译:联邦学习联合会(FL)利用边缘装置(通常是移动电话)的计算能力,同时通过让数据留在生产地点解决隐私问题,同时让数据留在生产地点解决隐私问题。主要服务供应商利用FL来改进项目建议、虚拟键盘和文本自动完成服务。FL业绩虽然具有吸引力,但受到多种因素的阻碍:一)参与客户能力不同(例如计算能力、记忆和网络连接);二)设备必须闲置、插入和连接到未完成的WiFi的功能的严格培训限制;三)数据异质性(a.k.a.a.a.o.a/n-IIness)。这些情况加在一起导致参与不均、摇晃动、辍学并进而放慢趋同速度,对FL许多应用程序的实用性提出了挑战。在本文件中,我们介绍了GEL、猜算和学习算法,通过为每个客户的模型更新,大大加快了趋同速度。GEL的力量是有效完成“免费”学习步骤,而没有额外的梯度计算。GEL提供这些猜想,通过精巧使用亚当优化的时段的时段,同时结合,将Fl-II最后的趋一致化速度显示Fx的递化速度在Slx的递增速度中的数据。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
106+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
7+阅读 · 2021年4月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Federated Learning for Mobile Keyboard Prediction
Arxiv
4+阅读 · 2018年11月8日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员