We develop a nonparametric extension of the sequential generalized likelihood ratio (GLR) test and corresponding time-uniform confidence sequences for the mean of a univariate distribution. By utilizing a geometric interpretation of the GLR statistic, we derive a simple analytic upper bound on the probability that it exceeds any prespecified boundary; these are intractable to approximate via simulations due to infinite horizon of the tests and the composite nonparametric nulls under consideration. Using time-uniform boundary-crossing inequalities, we carry out a unified nonasymptotic analysis of expected sample sizes of one-sided and open-ended tests over nonparametric classes of distributions (including sub-Gaussian, sub-exponential, sub-gamma, and exponential families). Finally, we present a flexible and practical method to construct time-uniform confidence sequences that are easily tunable to be uniformly close to the pointwise Chernoff bound over any target time interval.
翻译:我们开发了连续普遍概率比(GLR)测试的不参数扩展,并且对单向分布值的平均值开发了相应的时间统一信任序列。通过对 GLR 统计数据进行几何解释,我们得出了一个简单的分析上限,其概率超过任何预先规定的边界;由于测试的无限视野和考虑中的复合非对称无效物,这些都难以通过模拟来接近。我们利用时间一致的跨边界不平等,对单向和开放式分布类别(包括亚加盟、亚爆炸性、亚伽马和指数式等)的预期抽样规模进行了统一的非抽取性分析。最后,我们提出了一个灵活而实用的方法,用以构建一个容易在任何目标时间间隔内与切诺夫交界的点一致的、容易被吞并的时态信任序列。