When deploying modern machine learning-enabled robotic systems in high-stakes applications, detecting distribution shift is critical. However, most existing methods for detecting distribution shift are not well-suited to robotics settings, where data often arrives in a streaming fashion and may be very high-dimensional. In this work, we present an online method for detecting distribution shift with guarantees on the false positive rate - i.e., when there is no distribution shift, our system is very unlikely (with probability $< \epsilon$) to falsely issue an alert; any alerts that are issued should therefore be heeded. Our method is specifically designed for efficient detection even with high dimensional data, and it empirically achieves up to 11x faster detection on realistic robotics settings compared to prior work while maintaining a low false negative rate in practice (whenever there is a distribution shift in our experiments, our method indeed emits an alert).
翻译:在高吸量应用中部署现代机器学习驱动机器人系统时,检测分布转移至关重要。然而,大多数现有的分布转移检测方法并不适合于机器人设置,因为数据通常以流态形式出现,而且可能具有很高的维度。在这项工作中,我们展示了一种在线分配转移检测方法,对假正率进行保障----即,当没有分配转移时,我们的系统极不可能(概率 < $\ epselon$)错误地发布警报;因此,应当注意发布的任何警报。 我们的方法是专门设计的,即使使用高维度数据也能够有效检测,而且与以前的工作相比,在现实机器人设置上也取得了高达11x的更快的检测,同时在实践中保持低的虚假负率(当我们的实验中出现分配转移时,我们的方法确实会发出警告 ) 。