In recent years, anomaly detection has become an essential field in medical image analysis. Most current anomaly detection methods for medical images are based on image reconstruction. In this work, we propose a novel anomaly detection approach based on coordinate regression. Our method estimates the position of patches within a volume, and is trained only on data of healthy subjects. During inference, we can detect and localize anomalies by considering the error of the position estimate of a given patch. We apply our method to 3D CT volumes and evaluate it on patients with intracranial haemorrhages and cranial fractures. The results show that our method performs well in detecting these anomalies. Furthermore, we show that our method requires less memory than comparable approaches that involve image reconstruction. This is highly relevant for processing large 3D volumes, for instance, CT or MRI scans.
翻译:近年来,异常点检测已成为医学图像分析的一个基本领域。目前大多数医学图像异常点检测方法都基于图像重建。在这项工作中,我们提出一种基于协调回归的新异常点检测方法。我们的方法估计了一个数量内的补丁位置,并且只接受健康对象数据的培训。在推断过程中,我们可以通过考虑某个补丁的定位估计错误来检测和定位异常点。我们用我们的方法对3D CT 量进行3D CT 量评估,并评估有内出血和脑骨折的病人。结果显示,我们的方法在检测这些异常点方面表现良好。此外,我们还表明,我们的方法需要的记忆比涉及图像重建的可比方法要少。这对于处理大3D 量,例如CT 或 MRI 扫描非常相关。