Video anomaly detection (VAD) has been intensively studied for years because of its potential applications in intelligent video systems. Existing unsupervised VAD methods tend to learn normality from training sets consisting of only normal videos and regard instances deviating from such normality as anomalies. However, they often consider only local or global normality. Some of them focus on learning local spatiotemporal representations from consecutive frames in video clips to enhance the representation for normal events. But powerful representation allows these methods to represent some anomalies and causes missed detections. In contrast, the other methods are devoted to memorizing global prototypical patterns of whole training videos to weaken the generalization for anomalies, which also restricts them to represent diverse normal patterns and causes false alarms. To this end, we propose a two-branch model, Local-Global Normality Network (LGN-Net), to learn local and global normality simultaneously. Specifically, one branch learns the evolution regularities of appearance and motion from consecutive frames as local normality utilizing a spatiotemporal prediction network, while the other branch memorizes prototype features of the whole videos as global normality by a memory module. LGN-Net achieves a balance of representing normal and abnormal instances by fusing local and global normality. The fused normality enables our model more generalized to various scenes compared to exploiting single normality. Experiments demonstrate the effectiveness and superior performance of our method. The code is available online: https://github.com/Myzhao1999/LGN-Net.
翻译:多年来,由于对智能视频系统的潜在应用,对录像异常现象的探测(VAD)进行了大量研究。现有的未经监督的VAD方法往往从由普通视频组成的训练组中学习正常性,这些训练组通常只包括普通视频,并将不同情况与异常情况等正常情况分开。然而,它们往往只考虑当地或全球的正常情况。其中一些方法侧重于在视频剪辑中从连续的框框中学习当地的超时表现,以加强正常事件的代表性。但强大的代表性使这些方法能够代表某些异常现象并造成错失的探测。相比之下,其他方法则致力于将全球全培训视频的典型模式混为一身,以削弱异常现象的通用模式,这也限制它们代表不同的正常模式,并造成虚假的警报。为此,我们提议了一种两套程序模式,即本地-全球正常网络(LGN-Net),以同时学习当地和全球的正常情况。具体地,一个分支利用spotototomercial 预测网络从连续框架中学习外观和运动的规律性规律性和运动。另一个部门将整个视频的原型模型作为全球的正常的常规性,通过正常的存储比我们正常的惯性模型。LGNGNUD-GND-GNL的正常性,将显示一种正常的正常性比平级的正常的正常性比平级的正常性。一种普通性比比比。一种正常的惯性。一种正常性比比比。一种正常性比的惯性。一种正常的图像。一种正常性比比比比比。一种正常性。一种正常的惯性能和一种正常性。一种正常性比一种正常性。LMER性,一种正常性比一种正常性比一种正常性比一种正常性比一种正常性比一种正常性,一种正常性,一种正常性比一种正常性,一种比一种正常性,一种比一种正常性比一种比一种比另一种的惯性。LMLML-GNER性。一种正常性比一种正常性,一种比另一种性比另一种比一种比一种比一种比另一种比一种正常性。