Growing applications of generative models have led to new threats such as malicious personation and digital copyright infringement. One solution to these threats is model attribution, i.e., the identification of user-end models where the contents under question are generated from. Existing studies showed empirical feasibility of attribution through a centralized classifier trained on all user-end models. However, this approach is not scalable in reality as the number of models ever grows. Neither does it provide an attributability guarantee. To this end, this paper studies decentralized attribution, which relies on binary classifiers associated with each user-end model. Each binary classifier is parameterized by a user-specific key and distinguishes its associated model distribution from the authentic data distribution. We develop sufficient conditions of the keys that guarantee an attributability lower bound. Our method is validated on MNIST, CelebA, and FFHQ datasets. We also examine the trade-off between generation quality and robustness of attribution against adversarial post-processes.


翻译:基因模型应用的增长导致了新的威胁,如恶意人格和侵犯数字版权等。这些威胁的一个解决办法是模型归属,即确定产生所涉内容的用户端模型。现有研究表明,通过对所有用户端模型进行集中分类培训的中央分类员确定归属的实际可行性。然而,随着模型数量的不断增长,这一方法在现实中是无法伸缩的。它也没有提供可归属性保障。为此,本文件研究分散的归属,它依赖与每个用户端模型相关的二进制分类员。每个二进制分类员都用用户专用的钥匙进行参数化,并将其相关的模型分布与真实的数据分布区分开来。我们为钥匙制定了足够的条件,保证可归属性较低的约束性。我们的方法在MDIST、CelibA和FFHQ数据集上得到验证。我们还检查了生成质量和可靠性与对抗性后流程之间的权衡。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年6月15日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
专知会员服务
53+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员