We define new graph parameters that generalize tree-width, degeneracy, and generalized coloring numbers for sparse graphs, and clique-width and twin-width for dense graphs. Those parameters are defined using variants of the Cops and Robber game, in which the robber has speed bounded by a fixed constant $r\in\mathbb N\cup\{\infty\}$, and the cops perform flips (or perturbations) of the considered graph. We propose a new notion of tameness of a graph class, called bounded flip-width, which is a dense counterpart of classes of bounded expansion of Ne\v{s}et\v{r}il and Ossona de Mendez, and includes classes of bounded twin-width of Bonnet, Kim, Thomass\'e and Watrigant. We prove that boundedness of flip-width is preserved by first-order interpretations, or transductions, generalizing previous results concerning classes of bounded expansion and bounded twin-width. We provide an algorithm approximating the flip-width of a given graph, which runs in slicewise polynomial time (XP) in the size of the graph. We also propose a more general notion of tameness, called almost bounded flip-width, which is a dense counterpart of nowhere dense classes, and includes all structurally nowhere dense classes. We conjecture, and provide evidence, that classes with almost bounded flip-width coincide with monadically dependent classes, introduced by Shelah in model theory.


翻译:我们定义了新的图形参数, 将树宽、 退化、 和通用的颜色数字概括化为稀有的图表, 以及密度图形的曲线和双曲线。 这些参数使用 Cops 和 Robber 游戏的变体来定义 。 在这种变体中, 强盗速度被固定的恒定 $r\ inthbb N\ cup ⁇ 和警察执行考虑的图表的翻转( 或弯曲 ) 。 我们提出了一个新的图形类的调色概念, 叫做 捆绑的 翻动 和双曲线 双曲线 。 这是 Ne\ v{ et\ v{r}il 和 Ossona de Mendez 捆绑定的类 。 这些变形包含固定的双曲线, Kim, Thomas\\ e 和 Watrigant 。 我们证明, 翻动的曲线的界限是由第一阶解释, 或翻动, 将先前关于被绑定的缩的缩缩缩缩缩缩缩图的类结果概括化。 我们提供了一个折动的折变式平式平结构的变式变式的变式变式变式变式变式图表, 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员