We define new graph parameters that generalize tree-width, degeneracy, and generalized coloring numbers for sparse graphs, and clique-width and twin-width for dense graphs. Those parameters are defined using variants of the Cops and Robber game, in which the robber has speed bounded by a fixed constant $r\in\mathbb N\cup\{\infty\}$, and the cops perform flips (or perturbations) of the considered graph. We propose a new notion of tameness of a graph class, called bounded flip-width, which is a dense counterpart of classes of bounded expansion of Ne\v{s}et\v{r}il and Ossona de Mendez, and includes classes of bounded twin-width of Bonnet, Kim, Thomass\'e and Watrigant. We prove that boundedness of flip-width is preserved by first-order interpretations, or transductions, generalizing previous results concerning classes of bounded expansion and bounded twin-width. We provide an algorithm approximating the flip-width of a given graph, which runs in slicewise polynomial time (XP) in the size of the graph. We also propose a more general notion of tameness, called almost bounded flip-width, which is a dense counterpart of nowhere dense classes, and includes all structurally nowhere dense classes. We conjecture, and provide evidence, that classes with almost bounded flip-width coincide with monadically dependent classes, introduced by Shelah in model theory.
翻译:我们定义了新的图形参数, 将树宽、 退化、 和通用的颜色数字概括化为稀有的图表, 以及密度图形的曲线和双曲线。 这些参数使用 Cops 和 Robber 游戏的变体来定义 。 在这种变体中, 强盗速度被固定的恒定 $r\ inthbb N\ cup ⁇ 和警察执行考虑的图表的翻转( 或弯曲 ) 。 我们提出了一个新的图形类的调色概念, 叫做 捆绑的 翻动 和双曲线 双曲线 。 这是 Ne\ v{ et\ v{r}il 和 Ossona de Mendez 捆绑定的类 。 这些变形包含固定的双曲线, Kim, Thomas\\ e 和 Watrigant 。 我们证明, 翻动的曲线的界限是由第一阶解释, 或翻动, 将先前关于被绑定的缩的缩缩缩缩缩缩缩图的类结果概括化。 我们提供了一个折动的折变式平式平结构的变式变式的变式变式变式变式变式图表, 。