Deep subspace clustering networks have attracted much attention in subspace clustering, in which an auto-encoder non-linearly maps the input data into a latent space, and a fully connected layer named self-expressiveness module is introduced to learn the affinity matrix via a typical regularization term (e.g., sparse or low-rank). However, the adopted regularization terms ignore the connectivity within each subspace, limiting their clustering performance. In addition, the adopted framework suffers from the coupling issue between the auto-encoder module and the self-expressiveness module, making the network training non-trivial. To tackle these two issues, we propose a novel deep subspace clustering method named Maximum Entropy Subspace Clustering Network (MESC-Net). Specifically, MESC-Net maximizes the entropy of the affinity matrix to promote the connectivity within each subspace, in which its elements corresponding to the same subspace are uniformly and densely distributed. Furthermore, we design a novel framework to explicitly decouple the auto-encoder module and the self-expressiveness module. We also theoretically prove that the learned affinity matrix satisfies the block-diagonal property under the independent subspaces. Extensive quantitative and qualitative results on commonly used benchmark datasets validate MESC-Net significantly outperforms state-of-the-art methods.
翻译:深层子空间集群网络在子空间集群中引起了很多注意,其中自动编码器非线性地将输入数据映射成潜空,并引入一个完全连接的层自我表达模块,通过典型的正规化术语(例如,稀疏或低空)学习亲近矩阵;然而,所采用的正规化术语忽略了每个子空间的连接,限制了其分组性能;此外,所采用的框架存在自动编码模块与自我表达性模块之间的混合问题,使得网络培训不具有三重性。为了解决这两个问题,我们提议了一种名为最大负载子空间集群网络(ME-Net)的新型深层子空间集群方法。具体地说,MESC-Net最大限度地利用了每个子空间的亲近性矩阵的灵敏性,以促进每个子空间的连接性,其与同一子空间相对应的要素分布统一和密集。此外,我们设计了一个新的框架,以明确分离自动编码模块和自我表达式模块。我们还在理论上证明,在使用的独立质量模型模型下,在共同使用的质量模型模型上,对共同的磁性模型进行了基础化。