The aim of this paper is to analyze the robust convergence of a class of parareal algorithms for solving parabolic problems. The coarse propagator is fixed to the backward Euler method and the fine propagator is a high-order single step integrator. Under some conditions on the fine propagator, we show that there exists some critical $J_*$ such that the parareal solver converges linearly with a convergence rate near $0.3$, provided that the ratio between the coarse time step and fine time step named $J$ satisfies $J \ge J_*$. The convergence is robust even if the problem data is nonsmooth and incompatible with boundary conditions. The qualified methods include all absolutely stable single step methods, whose stability function satisfies $|r(-\infty)|<1$, and hence the fine propagator could be arbitrarily high-order. Moreover, we examine some popular high-order single step methods, e.g., two-, three- and four-stage Lobatto IIIC methods, and verify that the corresponding parareal algorithms converge linearly with a factor $0.31$ and the threshold for these cases is $J_* = 2$. Intensive numerical examples are presented to support and complete our theoretical predictions.
翻译:本文的目的是分析一组解决抛物线问题的模拟算法的紧密趋同性。 粗粗的传播器固定在后向的 Euler 方法上, 细的传播器是一个高阶单步集成器。 在微细传播器的某些条件下, 我们显示, 存在一些关键 $ $ 美元, 这样, 假的求解器可以线性地与接近0. 3美元的趋同率相融合, 条件是, 粗略的时间步和精细时步之间的比率( J$) 满足 J\ge J ⁇ $ 。 即使问题数据不显眼且与边界条件不相容, 粗粗粗的传播器也是稳的。 合格的方法包括所有绝对稳定的单步方法, 其稳定性功能满足 $ r (- incty) $ $ 1, 因此, 细微的传播器可以是任意的高阶。 此外, 我们研究一些流行的高阶单步步方法, 例如, 2 -, 3 - 3 - 4 级的Lobatto IIIC 方法, 并核实相应的准的准算法是直线向 $ $ 和 数 和 Q= 10- Q Q 和 这些案例的数值 的 。