We present a mesh-independent and parameter-robust multigrid solver for the Scott-Vogelius discretisation of the nearly incompressible linear elasticity equations on meshes with a macro element structure. The discretisation achieves exact representation of the limiting divergence constraint at moderate polynomial degree. Both the relaxation and multigrid transfer operators exploit the macro structure for robustness and efficiency. For the relaxation, we use the existence of local Fortin operators on each macro cell to construct a local space decomposition with parameter-robust convergence. For the transfer, we construct a robust prolongation operator by performing small local solves over each coarse macro cell. The necessity of both components of the algorithm is confirmed by numerical experiments.
翻译:我们为带有宏元素结构的螺旋藻上几乎无法压缩的线性弹性方程式的Scott-Vogelius分离, 提出了一个以网状独立和参数- robust 多元格解析的网格多元求解器。 离异能以中等多元度准确地代表了限制差异的限制。 放松和多格格传输操作员都利用宏观结构来保持稳健和效率。 为了放松, 我们使用每个宏细胞上存在的本地Fortin操作员来构建一个带有参数- robust 趋同的本地空间分解层。 对于转移, 我们通过对每个粗粗的宏观单元格执行小的本地解算法来构建一个强大的延长操作员。 数字实验证实了算法的两个组成部分的必要性 。