We present a mesh-independent and parameter-robust multigrid solver for the Scott-Vogelius discretisation of the nearly incompressible linear elasticity equations on meshes with a macro element structure. The discretisation achieves exact representation of the limiting divergence constraint at moderate polynomial degree. Both the relaxation and multigrid transfer operators exploit the macro structure for robustness and efficiency. For the relaxation, we use the existence of local Fortin operators on each macro cell to construct a local space decomposition with parameter-robust convergence. For the transfer, we construct a robust prolongation operator by performing small local solves over each coarse macro cell. The necessity of both components of the algorithm is confirmed by numerical experiments.


翻译:我们为带有宏元素结构的螺旋藻上几乎无法压缩的线性弹性方程式的Scott-Vogelius分离, 提出了一个以网状独立和参数- robust 多元格解析的网格多元求解器。 离异能以中等多元度准确地代表了限制差异的限制。 放松和多格格传输操作员都利用宏观结构来保持稳健和效率。 为了放松, 我们使用每个宏细胞上存在的本地Fortin操作员来构建一个带有参数- robust 趋同的本地空间分解层。 对于转移, 我们通过对每个粗粗的宏观单元格执行小的本地解算法来构建一个强大的延长操作员。 数字实验证实了算法的两个组成部分的必要性 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2021年10月25日
Arxiv
7+阅读 · 2021年7月5日
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员