Cluster randomized trials (CRTs) often enroll large numbers of participants, but due to logistical and fiscal challenges, only a subset of participants may be selected for measurement of certain outcomes, and those sampled may, purposely or not, be unrepresentative of all participants. Missing data also present a challenge: if sampled individuals with measured outcomes are dissimilar from those with missing outcomes, unadjusted estimates of arm-specific outcomes and the intervention effect may be biased. Further, CRTs often enroll and randomize few clusters by necessity, limiting statistical power and raising concerns about finite sample performance. Motivated by a sub-study of the SEARCH community randomized trial on the incidence of TB infection, we demonstrate interlocking methods to handle these challenges. First, we extend Two-Stage targeted minimum loss-based estimation (TMLE) to account for three sources of missingness: (1) sampling for the sub-study; (2) measurement of baseline status among those sampled, and (3) measurement of final status among those in the incidence cohort (i.e., persons known to be at risk at baseline). Second, we critically evaluate the assumptions under which sub-units of the cluster can be considered the conditionally independent unit, improving precision and statistical power but also causing the CRT to behave more like an observational study. Our application to the SEARCH highlights the impact of different assumptions on measurement and dependence as well as the real-life gains of our approach for bias reduction and efficiency improvement.


翻译:集群随机试验(CRTs)往往招录大量参与者,但由于后勤和财政方面的挑战,只有一组参与者可以选择来衡量某些结果,抽样的参与者可能有意或不有意地不代表所有参与者。 缺少的数据也提出了挑战:如果抽样者得出衡量结果的人与缺乏结果的人不同,未经调整的对具体武器结果和干预效果的估计可能存在偏差。此外,分类调查者往往按需要将少数组群招录和随机抽查,限制统计能力,引起对有限抽样业绩的关切。受SEARCH社区随机调查结核病感染发生率的次研究的驱动,我们展示了应对这些挑战的交叉方法。首先,我们扩大基于两套目标的最低损失估计(TMLE),以说明三个缺失来源:(1) 抽样研究的抽样;(2) 衡量抽样者中的基线状况,以及(3) 衡量发生率组群群(即已知处于风险的人)的最后状况。第二,我们严格评价了如何根据何种假设,以更精确的方式进行分组评估,例如,如何以更精确的统计性测算。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员